• Photonic $\mathbb{Z}_2$ topological Anderson insulators

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: That disorder can induce nontrivial topology is a surprising discovery in topological physics. As a typical example, Chern topological Anderson insulators (TAIs) have been realized in photonic systems, where the topological phases exist without symmetry protection. In this work, by taking TM and TE polarizations as pseudo-spin degrees of freedom, we theoretically propose a scheme to realize disorder-induced symmetry-protected topological (SPT) phase transitions in two-dimensional photonic crystals (PCs) with a combined time-reversal, mirror and duality symmetry $\mathcal{T}_f=\mathcal{T}M_z\mathcal{D}$. In particular, we demonstrate that the disorder-induced SPT phase persists even without pseudo-spin conservation, thereby realizing a photonic $\mathbb{Z}_2$ TAI, in contrast to a $\mathbb{Z}$-classified quantum spin Hall (QSH) TAI with decoupled spins. By formulating a new scattering approach, we show that the topology of both the QSH and $\mathbb{Z}_2$ TAIs can be manifested by the accumulated spin rotations of the reflected waves from the PCs. Using a transmission structure, we also illustrate the trivialization of a disordered QSH phase with an even integer topological index caused by spin coupling.

  • Symmetry-protected topological exceptional chains in non-Hermitian crystals

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: In non-Hermitian systems, the defective band degeneracies, so-called exceptional points (EPs), can form robust exceptional lines (ELs) in 3D momentum space in the absence of any symmetries. Here, we show that a natural orientation can be assigned to every EL according to the eigenenergy braiding around it, and prove the source-free principle of ELs as a corollary of the generalized Fermion doubling theorem for EPs on an arbitrary closed oriented surface, which indicates that if several ELs flow into a junction, the same number of outflow ELs from the junction must exist. Based on this principle, we discover three different mechanisms that can stabilize the junction of ELs and therefore guarantee the formation of various types of exceptional chains (ECs) under the protection of mirror, mirror-adjoint, or ${C}_2\mathcal{T}$ symmetries. Furthermore, we analyze the thresholdless perturbations to a Hermitian nodal line and map out all possible EC configurations that can be evolved. By strategically designing the structure and materials, we further exhibit that these exotic ECs can be readily observed in non-Hermitian photonic crystals. Our results directly manifest the combined effect of spatial symmetry and topology on the non-Hermitian singularities and pave the way for manipulating the morphology of ELs in non-Hermitian crystalline systems.

  • Four-band non-Abelian topological insulator and its experimental realization

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Very recently, increasing attention has been focused on non-Abelian topological charges, e.g. the quaternion group Q8. Different from Abelian topological band insulators, these systems involve multiple tangled bulk bandgaps and support non-trivial edge states that manifest the non-Abelian topological features. Furthermore, a system with even or odd number of bands will exhibit significant difference in non-Abelian topological classifications. Up to now, there is scant research investigating the even-band non-Abelian topological insulators. Here, we both theoretically explored and experimentally realized a four-band PT (inversion and time-reversal) symmetric system, where two new classes of topological charges as well as edge states are comprehensively studied. We illustrate their difference from four-dimensional rotation senses on the stereographically projected Clifford tori. We show the evolution of bulk topology by extending the 1D Hamiltonian onto a 2D plane and provide the accompanying edge state distributions following an analytical method. Our work presents an exhaustive study of four-band non-Abelian topological insulators and paves the way to other even band systems.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心